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by
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Independently of each other, in 1957 R. E. Roberson in the

United States and D. King-Hele in Great Britain provided general

formulas giving the first order effects of the oblateness of the

Earth upon satellite orbits, previous analyses by others having

contained inconvenient restrictions. Roberson and King-Hele obtained

their results by the use of methods which are familiar to those who

are trained in the mathematics of Astronomy but not familiar to

those having onlv the usual training in Engineering Mechanics, who,

accordingly, do not have easy access to these useful and important

results

.

In the present paper these results are derived by a quite ele-

mentary procedure requiring nothing more than elementary geometry,

vector algebra, and mechanics. An appendix considers a few simpli-

fied models of the Earth which have the same first order effects as

does an oblate Earth. This material should be of interest to en-

gineers engaged in the space effort as a means of understanding

the primary perturbations which result from oblateness.

A complete table 6f notation is given in Appendix B. This

table is not arranged alphabetically, however, since so many of the

definitions of the quantities depend on others in the list. Instead

the arrangement is in "operational sequence", that is, in the order



in which the symbols logically occur in the development. The

notation agrees generallywith that used in astronautical litera-

ture; for example, V means geopotentlal , v means true anomaly, and

V denotes satellite (vector) velocity.

First we establish some coordinate systems. is the mass

center of the Earth and n is a unit vector parallel to the axis of

rotation of the Earth pointing North, a and b are fixed unit vec-

tors in the Earth's equatorial plane so as to form a right handed

cartesian system a, b, n; actually, of course, because of the pre-

cession of the equinoxes and other slow motions, these vectors are

not truly fixed, but we may regard them as being fixed for the pur-

poses of this analysis. We could take a to be in the direction of

the projection upon the Earth's equatorial plane of the line from

to the first point of Aires, but there seems to be no uniformity

in this matter. We observe that conventionally the orbits of Earth

satellites are referred to the Earth's equatorial plane in the same

way that planetary orbits are referred to the plane of the ecliptic,

but there does not seem to be perfect uniformity with regard to a

reference position for longitude such as that provided by the first

point of Aires.

Let Q be the instantaneous position of the satellite, with r

OQ and V = r, the dot denoting differentiation with respect to time.

We define the scalar coordinates of satellite position by the equations

x = r«a, y r»b, z r«n [la,b,c]

so that

r - xa + yb + zr\ [2]



The geopotential for an oblate Earth (see Appendix A) may be

approximated by the expression

V - -ur~
l
[l + Jr"

2
(l - 3s

2
r~

2
)/3] [3]

where y CM is the product of the universal constant of gravitation

by the mass of the Earth, J is the coefficient of the second zonal

harmonic, and r = /r»r. An approximate numerical value for \i is

9.66*10 u (statute miles) (seconds) . At the surface of the Earth,

_2
at the equator where r = 3964 statute miles, the product Jr ' has

-3
the value 1. 623*10 (diraensionless) . Thus, evidently, for an Earth

satellite, the second term in the square brackets in Eq . [3] is much

smaller than unity. For a further discussion of Eq. [3], see Appen-

dix A.

The force, per unit mass of satellite, exerted on the satellite

by the gravitational attraction of the Earth is

* i t, JUL k^V 3V r/1f = - grad V = - a^ -b- -n- [4]

2 2 2 2
and to evaluate this expression, we note first that r = x + y + z

so tnat n o /o o
. n , n 2 ,, 2 N n/2 . 2
lL _ QL -111 _ d(r ) . 8r
3x *

dr»
2 dx

"
dr2 3x

= (n/2)(7»
2
)
n/2_1

(2x) = nxr
n ~ 2

[5]

with similar formulas in which y and a replace x. Thus

f = ugradfr"
1
+ JJ*~

3
/3 - J3

2
r~

5
]

= v [(-xr~
3 - Jxr"5 + 5J^3

2 r~ 7
)a +

(-yr - Jyr + 5Jyz r )b +

-3 -5 2 -7 -5
(-zr - Jzr> + 5Jzz r - 23zv )n]

and by using Eq. [2] this may be more briefly written as



f - - vr~
3
r - Jur~

5
r(l - 5z

2
r>~

2
) - 2Jyzr"

5
n

_2
- - yr e - AJue - BJun [6]

where * - r/r is a unit vector parallel to r and
r

A - r~
A
(l - 53

2
r~

2
), B = 2sr~

5
[7a, b]

Note that if J were zero in Eq. [7] , we would have the simple inverse

square law of attraction toward the mass center of the Earth.

We now define h to be the angular momentum (with respect to 0)

of a unit mass of satellite, i. e.,

h - r*v [8]

Since

v = f - d(re )/dt re + re
r r r

and since e *e 0, we have
r r

2
r*h = rx(rxv) - r«vr - r>rv = r (e »ve -v)

r r

r [(!• + 0)e - re - re ] = -r e [9]
r r r r

We now use the fundamental principle of Mechanics that the rate of

change of angular momentum (about which we consider to be a fixed

point since we are concerned with the motion of relative to 0) is

equal to the moment about of the applied force; that is

fi - rxf [10]

In the present case with only one moving particle, this formula is

very easy to obtain from Eq. [8] , from which

h « f*v + r*v - r*v = rxf

since V is the acceleration which is equal to f , the force per unit

mass.

Next, consider the expression V*h. Taking the derivative with

respect to time and using the notation e, h/7z, where h « A)*\) , we

have
d
~(vxh) - vxh + vxh - fxh + vx(rxf)



_3
- pr r*h - Jp(Ae + Bn)xh + vx[rx(-BJun)]

-l
- ye + uJMAe, *e + Be xn + Bfc vx(nxr)] [111

r h r h

Integrating this expression with respect to time gives

Vxh = u(e + S) [12]

where S is a vector whose time-derivative satisfies

• -1
s jft[Ae. *e + Be, *n + Bfr vx(nxr)] [13]

h r n

Also, from Eq. [10] and Eq. [6],

h = BJynxr [14]

Since we have seen, in Eq. [3], that the terms involving J are small

compared to those not containing J, we regard J as a "small" quantity.

Thus, Eq. [13] and Eq . [14] indicate that S and h are "nearly" con-

stant vectors; that is, their magnitudes and orientations are but

slowly changing.

Next, consider the scalar quantity

2
r»v*h rxvh = h u(r +r*s)

= ur(l + e »S) - ur(l + s costf) [15]

where s = /§»S and cos V = e 'S/s. V is the angle, shown in Fig. 1,

which is known as the true anomaly. If we define the quantity

p = h
2
M~

l
[16]

which has the dimensions of a length, we may write

p » r(l + s cos v) [17]

-1* •

In Eq. [17] only r> and V vary "rapidly", p = 2h]i h and s both

involving J as a factor. Eq. [15] is that of an ellipse, called the

instantaneous elliptical orbit (IEO) , from which the actual orbit of

the satellite begins to differ as time goes on. The point on this IEO

(point P in Fig. 1) corresponding to v is called the instantaneous



perigee point, toward which the unit vector e S/e points. Also,

the eccentricity, s, of the IEO is called the instantaneous eccentricity,

The angle i (0 i *w) , satisfying cos i n»e, , is the (instantaneous)

inclination of the orbit plane. A unit vector in the direction e *n

,

i. e. , the vector j « ev*n csc ^» being perpendicular to both the plane

of the IEO and the equatorial plane, thus points toward the descending

node D (Fig. 1) of the former; -j points toward the ascending node A.

The angle u> * <A0P is called the argument of perigee. The quantity p

is seen to be the semi-latus rectum of the IEO.

We will use the unit vector i j*e, such that i, j, e, form a
h h

right handed triad, slowly changing in orientation since j and e are

not constant. We let u and w be the angles BOQ and BOP, respectively

(Fig. 1) so that cos u l" *e , cos w i *e . Note that u m V + W and
r' s

that w is "nearly" constant since the IEO changes only slowly. This

implies that u = v, approximately, a result which will be used repeat-

edly. Note also that u = w + tt/2 . We also introduce the unit vector

e o e, xe so that e , e
rt , e, also form a slowly moving unit triad.8hs s 6 h

Finally, we introduce the unit vector I = jxn so that I , j , n is a unit

triad which rotates slowly about n« Thus, in particular, we have

i - I cos i + n sin i [18]

e * i cos u + j sin u [191
r

A littie manipulation easily establishes the following relations,

nxr - (-1 sin u + j cos i cos u) [20]

z - re »n - r sin i cos u [21]
r

Now it is obvious that, to the approximation with which we are working,

we have

e - we *e t 22 l

r h r

but it is also easily possible to obtain this result formally as follows



e 1 cos u + j sin u - (1 sin w - J cos u)u

•
• •

- (J cos u - 1 sin u)u

since 1 and j nearly vanish. However,

e. «? e, xj sin u + e, x1 cos u -i sin w + j cos u
n r n n

and Eq. [22] is established. From this we have

h =. rxf = rx(re + rue xe ) = rue x (e *e ) - r ue,_
r n r r ' n r h

ft = r
2
w [22a]

r>~ = r h~ u p~ h~ u(l + e cos v) [23]

Substituting Eqs. [7b], [20], [21], and [23] into Eq. [14], expanding cos v

cos(u - w) , and multiplying by dt, we obtain

dh « 2Jyp 7z sin i (1 +3 cos u cos w + s sin u sin w)

2
x(-I sin u cos u + J cos i cos u)du ,_.,

[24]

It is elementary but tedious to obtain the indefinite integral of this

expression and since the result of such an exercise does not seem to be

of particular value, we will perform the integration for one complete

passage only, as u increases by 2tt,. to obtain what we designate as Ah,

the net change in h per passage. To do this most easily, note that for

non-negative integers M, N

. sin x cos x 6x = [25]

unless both M and N are even. We easily obtain

Ah - jj\mh~
lp~ l

sin 2i [26]

Since j.e, - 0, the variation, Aft, in the magnitude of h is of higher order

in J. Thus we also have

—2 —1 —2
Aeh

- 3Jvvh p sin 2£ - jJwp sin 2i [27]

using Eq. [16], and from the definition of j we have

Aj - A(e,xn cac i) - Ae
h
xn esc i + e^n Acsc i



-2 -2
Aj - 2Jnp j*n cos i + JAcsc i - 2Jirp I cos i [28]

since evidently we must omit the term In J because j.j 1. We may also

see In another way that there Is no j-component since the variation In

t

is of higher order In J, Ah being perpendicular to the plane in which

angle i is measured. We observe that the line of nodes rotates (in a

sense opposite to that of the satellite itself if i < tt/2) with mean

angular velocity

B* - -2HJTrp"
2
P"

1
cos i [29]

where P is the orbital period, which differs only by a term of order J

from the value

P » 2Tra
3/2

u~
1/2

[30]

(a Is the semimajor axis of ellipse) which would obtain if J were zero.

We use the asterisk in this formula and later to indicate a mean value

in the sense that we have indicated. Thus we can finally obtain the very

important formula

B
N

« -nc cos i [31]

where

C - (g/r>
E )

l/2
(J/rl)(rK

/a)
7/2

(l - s
2 )" 2 [321

-2
in which r» represents the equatorial radius of the earth and g yr

represents the acceleration of gravity at the surface. We have used the

following relations

2a " r
(y- )

+ r
(u-*) " P/( 1+s >

+ P/U-«> " 2p/(l-s
2
)

,.-2.-1 . -7/2,, 2 N
-2 1/2 . -7/2,, 2 N

-2 1/2 -1
2Jto P » 3a (l-« ) y » Ja (1-8 ) g r - C

E

Returning now to Eq. [13], we wish to express all vectors in terms of

the (slowly moving) triad e , e «.. We haveson



e e cos v + e A sin v: n e, cos i + i sin i
r s 6 h

1 = e cos w - e n sin w; v = f = re + rue, *e
s 6 r h r

It is now a matter of straightforward, if tedious, substitution into

Eq. [13]. Some intermediate evaluations are shown below.

e xe - -e sin v + e„ cos v
h r s 6

e, *n = e, *1 sin i - sin i (e sin w + e n cos w)
h h s 8

n*e =
r s e h

sin i cos w - sin i sin u cos i

cos y sin y n

= -e cos i sin y + e„ cos t cos y + e, sin i sin w
s h

2 •

vx(nxr) - rre x(nxe ) + r w(e, xe )x(nxe )
r r h r r

= rr(e sin i sin u sin y - e. sin i sin k cos v + e, cos t)
s h
2»

+ r w sin t sin w (e cos v + e. sin y)
s 9

2«
From Eq. [22a] we have r u " h and from Eq. [17] and Eq. [23] we get

• 3 -1 • -1
r>r = r p sv sin v = hs sin V (1 + s cos v) . Thus we can write

vx(nxr) = (1 + s cos y) Msin t sin u [e (s + cos y) + e sin y]

+ e, s sin y cos i)
n

-A -2* 2
We also note that we may write Jhr = Jp v(l + s cos y) by using

• •

Eq. [23] and Eq. [17] and the fact that u = V approximately. Thus, upon

substituting into Eq. [13], we find

• -2 2 2
S - Jp (1+scos y){(l-5sin t cos u)(l + ecos v) (-e sin v +

2 .

e a cos y) + 2(l+scos y) sin \ cos u (e slnw+ e cos w) +
6 So

2
2 sin i sin w cos w [e (s + cos v) + e sin v] +

s 9

ee, sin 2t sin y cos u} v
h

Multiplying by dt and expanding functions of u in terms of V and

w, w being regarded as constant, gives an expression for dS which
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may be integrated for general V. However, It is the net change per period

which is of greatest interest, and upon use of Eq. [25], we find that

-2 2
AS =* JsTrp [(2-3 sin i)e - e, sin 2i sin w] [33]

Since S*AS 0, the variation of 8 is of higher order in J, and we have

-2 2
Ae = Ji\p [(2-3 sin ^)e - e sin 2^ sin w] [34]

For the argument of perigee, we have

- cos co j # e * sin W
s

- cos(w+Aw) - cos oj + Aw sin to

- (J+Aj)-(e +Ae )
s s

- j«e + j«Ae + Aj«e
s

s

"

inW + jTrp l(2-3sin ^)j -«g + 2l»e r cos i]

-2 2

.

= sin W + Jirp ' cos W (4 - 5 sin t)

Since sin to cos w, we clearly have

Aw = Jirp
2
(4 - 5 sin

2
i) [35]

Dividing by P, the time of passage, we have

w* = (C/2)(4 - 5 sin
2

t) [36]

for the mean rate of change of argument of perigee. From Eq. [31] we see that

.*
fl » - C cos t

is the mean rate of change of the longitude of the ascending node. Combining

this result with that of Eq. [36], we find that the mean rate of change of

the longitude of perigee is

w* - (C/2)(4 - 5 sin
2
i - 2 cos i) [38]

where w, the longitude of perigee, is the "angle" to ft + w measured in two

different planes.

The result given in Eq. [36] is sometimes incorrectly referred to as

the average rate of rotation of the line of apsides; strictly speaking it is

simply the average rate of change of argument of perigee. The average rate
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of rotation of the line of apsides really is simply

P
-1

Ae
g

- (C/2)[(2 - 3 sin
2
t)e

Q
- e

h
sin 2t sin w]

the magnitude of which is

B* » (C/2)[(2 - 3 sin
2
t)

2
+ (sin 2t sin u)

2
]

1/2
[39]

The difference between this result and the value given in Eq. [36] is known

to astronomers as the difference between the draconitic and the inertial

motion of the apsides (1).

It is of some interest to have a formula for the mean angular velocity

of the e , e_, e, triad. It is not difficult to show that this is given by
s 8 h b j

the expression

B
Triad

= (C/2)[(2 - 3 sin
2
t)e

h
- i sin 2i] [40]

The results of principal interest are given by Equations [26] through

[40] . These equations or their equivalents seem to have been first obtained

by R. E. Roberson (2) and by D. King-Hele (3). Both of them also discuss

variations in the orbital period from the normal value

P - 2,a
3/V 1/2

but this analysis seems to be of a higher order of difficulty than that

presented here. There are obvious practical difficulties in even defining

an orbital period. It could, for example, refer to the successive passages

through the perigee point (of the IEO determined at perigee) , or it could

refer to successive passages of the descending node. The analysis leading

to Eq. [12] has been adapted from a recent popular textbook (4).

Grateful acknowledgment is made of helpful suggestions from

Dr. W. E. Bleick of the Naval Postgraduate School and from Dr. W. W.

King of Georgia Institute of Technology.
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Appendix A.

Remarks about Eq. [3].

A large literature has been developed concerning the potential

of various mass distributions. Much of it has been concerned with

the problem of determining the potential at an exterior point of

a homogeneous ellipsoid. This problem is surprisingly difficult,

but if the figure is of revolution, the results can be expressed in

elementary (even though quite complicated) terms. Among readily

available treatments, that of Thomson and Tait (5) is quite readable

even though it is quite old. In an editorial footnote added in 1912,

H. Lamb refers to a history of the subject by Todhunter. The latter

seems to have been reprinted recently, but the writer has not been

able to find a copy (6).

However, the Earth is certainly not a homogeneous ellipsoid,

and, indeed, the finer details of the mass distribution of the Earth

are presently being revealed by sophisticated analysis of observations

made on actual satellite orbits. Our purpose in this Appendix is

merely to indicate the genesis of Eq. [3] and to present a very

simple model which yields Eq. [3],

If is the mass center of the mass distribution, the exterior

point at which potential V is being evaluated, and T is the general

location of mass element dm, we let r denote the distnce OQ, p denote

the distance OT, a denote the cosine of the angle QOT, and B denote

the ratio p/r. It is well known then that the potential may be

expressed in a series of integrals (over the mass distribution) of

Legendre polynomials in a, viz.:

V » -(G/r)/IP
n
(a) 8

n
dm
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where the sum runs from zero to infinity and the symbol P( )
n

denotes the Legendre polynomial of degree n. If the body is

homogeneous and nearly spherical, with principal moments of

inertia 1,1, and J , this mav be developed as
x* y y z

V = (-y/r){l+(2r
2
M)~

1
[J +1 +1 -3(a

2
I +b

2
I +c

2
I )]+...}

x y z x y z

where a, h, and a are the direction cosines of line 00 with

respect to the principal axes (through 0). If we take the z

axis as northward, and consider an oblate spherical Earth with

semimajor axis A and semiminor axis B, this becomes
2 2

V = - yr
_1

[l + ^f- (1 - 3sV2
) + ... ]

lOr

and the coefficient J in Eq . [3] may be identified with the quantity

2 2
(A -B )/10. The deleted terms, indicated by ... in the two preceding

equations indicate terms of higher order in v . However, since the

Earth is not a homogeneous spheroid, the value of J cannot be cal-

culated from a knowledge of A = equatorial radius and B = polar

radius, but, instead, must be inferred from observed perturbations

of satellite orbits. The forgoing has given an explanation of the

source of Eq . [3] without, however, offering a model of the Earth

from which Eq. [3] may be derived.

Another point of view is given in what follows. The oblateness

of the Earth may be regarded as resulting in a deficiency of mass

near the poles as compared to a homogeneous spherical Earth. Thus,

we are led to consider a model composed of one positive point mass

M located at and two equal negative point masses (-m) located on

the polar axis at equal distances d from 0; see Fig. 2. The potential

-1 -1-1 2 2°
V at Is given by -V/G = My - mv. - rnr„ . Now v = x + z'\ so

that we have

(r
l 2

)? = x2+(z±& 2
= r-tlzd+d

2
= r

2
[l+r~

2
(d

?
±2zd)}
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where the upper (negative) sign refers to v and the lower (positive)

sign refers to r„. Combining these relations, we find

Vr/Qrr = -CVn) + 2 - (d/r)
2
(1 - 3n

2
/r>

2
) + ...

2
plus terms involving higher powers of (d/r) . Since we propose to

keep (d/r) quite small, we will he justified in neglecting them. Thus

,

writing n = m/M
t

a positive number, we have

V = - QMr (I - In) - nMGcTr (1 - 3a"r ) + ...

Now M(l-2n) = M-2m = M_, the mass of the Earth, so that M = .V_/(l-2n).

Thus, recalling that u = GM_, we have
h

V = - ur~
l
{l+ [nd

2
/(l-2n)]r~

2
(l - 3S

2
r~

2
) + ...}

2
so that we identify J/3 with the quantity nd / (l-2n) . Thus

5.41xl0'
4

= JrI
2
/3 = [n(l-2n)](r7/rv,)

2

and

(dfrJ?* 5.AlxlO~
4
(n

_1
-2)

h

There is, of course, no unique decomposition. If we take n = 1/3,

then m = M„ and M = W
, with ^ = 0.023*%, = 92.3 statute miles, and

E E E

so on. The following tabulation gives a few such choices.

5
M/M

E
m/M

E

50

E
J (miles)

101 1.08-10" 5
13.0

21 10 5.A1-10"
5

29.2

5 2 2.71-10" 4
63.6

3 1 5.41-10
-4

92.3

2 .5 1.08-10" 3
130.

A

Since these values of (dfrS) are so small, then, a forteriori

,

values of (d/r) will be even smaller, where r is the distance

from the center of the earth to a satellite: thus, truncation

-1/2
of the binomial series expansions of (r. _) is well justi-

fied and any of these models does a good job of representing
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the Earth's actual potential field.
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Appendix B.

List of Notations.

Except for the division into general catagories (general, points,

vectors, scalars) , the listing is in the sequence that the svmhols are

introduced in the text rather than in alphabetical order.

A. General

A denotes net change (per orbit passage) of quantity following.

d- — denotes differentiation with respect to time, t.

*
emphasizes mean value over one orbit passage.

B. "Points

= mass center of the Earth.

= position of satellite.

P = perigee point of IEO.

D = descending node of IEO.

A = ascending node of IEO.

B = point on orbit on vector 1 extended.

T = location of mass element dm.

C. Vectors

n = unit North vector.

a ,D = fixed unit vectors in Earth's equatorial plane.

r = vector 00 = position vector of satellite.

V r = velocity of satellite

' = attractive force per unit mass of satellite.

e = r/r = unit vector in direction of satellite position.



18

h = r*V =* angular momentum about per unit mass of satellite.

e, = h/h = unit vector in direction of h.
h

S = vector satisfying Eq. [13].

e = S/s = unit vector from toward P.
s

j = e , *n esc i = unit vector from toward I).
n

1 = j*e = unit vector of triad i, j, e, .

s h

e rt
= e, xe = unit vector of triad e , e nt e, .

9 h s s ' 6 h

I = jxn = unit vector of triad I, j, n.

B„ = mean angular velocitv of line of nodes.
N

_*
B„, , , = mean angular velocitv of e , e

rt , e, triad.
Triad s 9 h

D. Scalars; dimensionality is indicated following semicolon,

x = r*a; I.

y = r»b; L.

z = r«n; L.

2 -2
V = geopotential at point Q; £ T .

u = GM„ = 9.66x10 (statute miles) (seconds) ; L T .

G = coefficient of universal gravitation: L^F T .

J = coefficient of second zonal harmonic of potential

-3 2 2
= 1.623x10 V;

; L .

r = /r-r = distance OQ : L.

-4,. _ 2 -2, _-4
A = r (1 - 5s r ) ; L .

-5 -A
B = 2zr ; L .

Also, in Appendix A 3 letters
A and B d,enote semi-axes of
the Earth.

t = time; 7.

2 -1
h = /h»h = magnitude of angular momentum per unit mass; r, y .

y = true anomaly, angle POQ = cos (e *e ) ; dimensionless

.

2 -1
p = h \i = semi-latus rectum of IEO; £.

s = /s «S = eccentricity of IEO; dimensionless.



19

i = inclination of plane of TEO with resnert to equatorial plane

= cos (n*e. ): dimensionless.

a) = argument of nerigee = angle AOP ; dimensionless.

u = angle H00 = cos (1 *e ); dimensionless.

w = angle ROP = cos (i *e ); dimensionless.

a - semimajor axis of IEO; L.

3/2 -l/
P = 2-na u = period of orbital passage; T.

1 In o i In n -n

= coefficient in several important results:

r = radius of the Earth; T,.

-2 -2
a =

y v = acceleration of gravity at surface of Earth; LT

.* -1
u = mean rate of change of argument of perigee; T

• * _1
ft = mean rate of change of longitude of ascending node; T

.* _1
co = mean rate of change of longitude of perigee; T

* -1
B. - mean rate of rotation of line of apsides; T
A

p - distance OT to mass element dm: L.

a cosine of angle HOT; dimensionless.

8 = p/r; dimensionless.

P ( ) = Legendre polynomial of degree n; dimensionless.

2
I .1 ,1 = principal moments of inertia at 0; FLT .

X y
3 z '

v

a>h 3 c = direction cosines of 00 with respect to principal axes;

dimensionless

.

A,B = semiaxes of oblate Earth; L.

2-1
M = postttve mass at 0; FT L

2 -1
-m = negat%ve mass on polar axis; FT L

d = distance from M to -mi L.

n = m/M\ dimensionless.

2 -1
AC = M-2m = mass of Earth; FT L .

E
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1
' w l

Figure la

|
Figure lb

Figure 1 Details of orbit of Earth satellite. Figure la

is looking south along axis of Earth: Figure lb

is looking along line of nodes from ascending node
A toward descending node D; Figure lc is true pro-
jection of orbit. P is the perigee point, is the

center of the Earth, and Q is the location of the

satellite. Angle AOR is a right angle. Q is the

longitude of the ascending node, w is the argument
of perigee, v is the true anomaly, and angles u and w
are as indicated.



21

Figure 2 Simplified model of the F.arth

consisting of positive mass m

at center and two negative masses

-m on polar axis.

* x >
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